Skip to contents

All functions

assim.batch()
Run Batch PDA
autoburnin()
Automatically calculate and apply burnin value
bounded()
bounded
calculate.prior()
calculate.prior
correlationPlot()
Flexible function to create correlation density plots
ddist()
ddist
gelman_diag_gelmanPlot()
Calculate Gelman Diagnostic using coda::gelman.plot
gelman_diag_mw()
Calculate Gelman diagnostic on moving window
generate_hierpost()
Helper function that generates the hierarchical posteriors
getBurnin()
Calculate burnin value
get_ss()
get_ss
get_y()
get_y
gpeval()
gpeval
hier.mcmc()
Hierarchical MCMC using emulator
is.accepted()
is.accepted
load.L2Ameriflux.cf() load.pda.data()
Load Ameriflux L2 Data From NetCDF
load_pda_history()
Helper function that loads history from previous PDA run, but returns only requested objects
makeMCMCList()
Make MCMC list from samples list
mcmc.GP()
mcmc.GP
minimize.GP()
minimize.GP
pda.adjust.jumps()
Adjust PDA MCMC jump size
pda.adjust.jumps.bs()
Adjust PDA block MCMC jump size
pda.autocorr.calc()
autocorrelation correction
pda.bayesian.tools()
Paramater Data Assimilation using BayesianTools
pda.calc.error()
Calculate sufficient statistics
pda.calc.llik()
Calculate Likelihoods for PDA
pda.calc.llik.par()
pda.calc.llik.par
pda.create.btprior()
Create priors for BayesianTools
pda.create.ensemble()
Create ensemble record for PDA ensemble
pda.define.llik.fn()
Define PDA Likelihood Functions
pda.define.prior.fn()
Define PDA Prior Functions
pda.emulator()
Paramater Data Assimilation using emulator
pda.emulator.ms()
Paramater Data Assimilation using emulator on multiple sites in three modes: local, global, hierarchical First draft, not complete yet
pda.generate.externals()
This is a helper function for preparing PDA external objects, but it doesn't cover all the cases yet, use it with care You can use this function just to generate either one of the external.* PDA objects, but note that some args cannot be blank depending on what you aim to generate
pda.generate.knots()
Generate Parameter Knots for PDA Emulator
pda.generate.sf()
Generate scaling factor knots for PDA Emulator
pda.get.model.output()
Get Model Output for PDA
pda.init.params()
Initialise Parameter Matrix for PDA
pda.init.run()
Initialise Model Runs for PDA
pda.load.priors()
Load Priors for Paramater Data Assimilation
pda.mcmc()
Paramater Data Assimilation using MCMC
pda.mcmc.bs()
Paramater Data Assimilation using MCMC
pda.mcmc.recover()
Clean up a failed PDA run
pda.neff.calc()
Calculate N_eff
pda.plot.params()
Plot PDA Parameter Diagnostics
pda.postprocess()
Postprocessing for PDA Results
pda.settings()
Set PDA Settings
pda.settings.bt()
Apply settings for BayesianTools
pda.sort.params()
Function to sort Hierarchical MCMC samples
prepare_pda_remote()
helper function for submitting remote pda runs
return.bias()
return.bias
return_hyperpars()
return_hyperpars
return_multi_site_objects()
This is a helper function partly uses pda.emulator code
runModule.assim.batch()
Run Batch module
sample_MCMC()
Helper function to sample from previous MCMC chain while proposing new knots
sync_pda_remote()
helper function for syncing remote pda runs this function resembles remote.copy.from but we don't want to sync everything back
write_sf_posterior()
Function to write posterior distributions of the scaling factors